Understanding Pressure Sensitive Adhesives PSA 101

Presented by

The Adchem Corporation

Adhesive Technology

Here's what you will learn:

- Formal definition of PSA
- Common PSA product formats
- Rubber vs. Acrylic adhesive formats
- Common factors that will:
 - Influence your PSA selection
 - Determine application success

Definition

Pressure Sensitive Adhesive:

"Aggressive and permanently tacky substance that adheres with finger or hand pressure, and exerts a strong holding force..."

Pressure Sensitive Tape Council

- Common consumer products that use PSA:
 - Masking tape
 - Packaging tape
 - Self-stick postage stamps
 - Mailing labels

Common PSA Terminology

Adhesion

Ability to stick or bond to a substrate.

Cohesion

Internal strength of an adhesive to itself

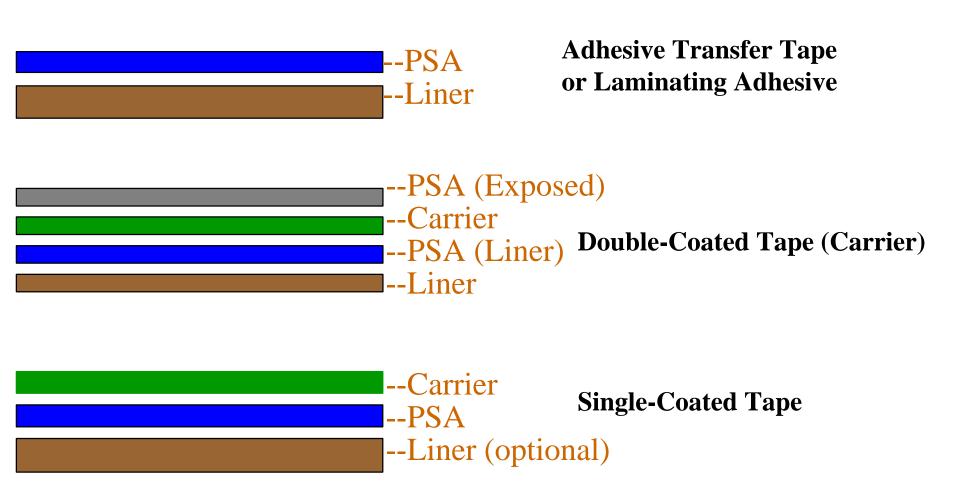
Substrate

 The surface or material to which you want your PSA to stick.

Surface Energy

- A measure of the molecular attraction of the facial contact of a material.
- Property that will effect the ability the PSA to stick

Wet out

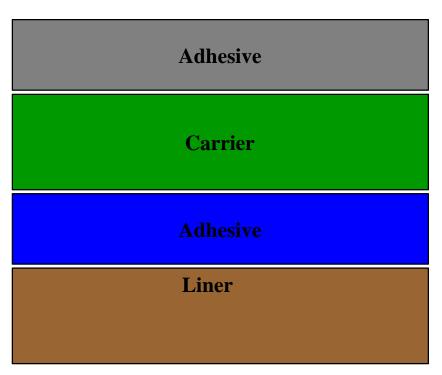

 The ability of an adhesive to flow and/or reflow over a surface to maximize bond strength based on higher contact area.

Common PSA Product Formats

Double-Coated vs. ATT

- Double-Coated Tapes
 - Thicker (3-10 mil)
 - Less conformable
 - Easier dispensing
 - Level-winding or spooling
 - Lower temp resistance
 - "Removable"
 - Reinforces substrate

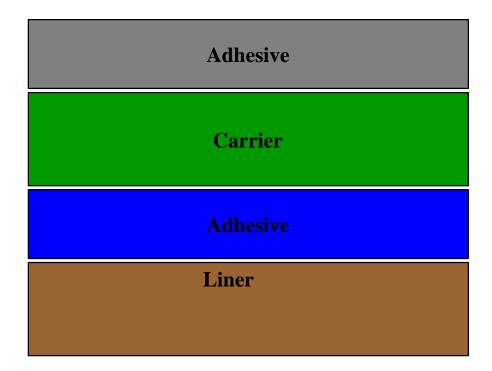
- Transfer Tapes or Laminating Adhesive
 - Thinner (1-5 mil)
 - More conformable
 - More difficult dispense
 - No level-winding
 - Higher temp resistance
 - "Permanent"
 - Doesn't reinforce substrate


Biggest Difference – Double-Coated Tapes have a Carrier.

Carrier Function

- Stabilize the Adhesive
- Improve Handling
- Add Thickness
- Provide Removability
- Provide Barrier
 Between Adhesive

Double-Coated Tape



Carrier Types

- Polyester
- Polypropylene
- Polyethylene
- Foam
- Paper
- Tissue

Double-Coated Tape

Release Liners

A protective covering for the adhesive to prevent "unwanted" adhesion and contamination of surface during shipping and handling.

- Release liners are typically engineered to provide a desired release characteristic.
- Suitable liners may be:
 - densified Kraft
 - poly-coated Kraft
 - plastic films (PET, PE, HDPE, PP)
 - "board"

Three Types of PSAs

Rubber PSA (Indoor)

Acrylic PSA (Outdoor)

Silicone PSA (Wide Temp)

Rubber Adhesives

Adhesives made from natural or synthetic rubbers which are made tacky by mixing them with various compounds.

- Oldest PSA
- High Initial Strength (Good Thumb Appeal)
- Economical

Performance Characteristics Include:

- Adequate for short term, non-critical applications (Indoor)
- Limited chemical, temperature and Ultra Violet light resistance

Acrylic Adhesives

A combination of acrylic monomers and other compounds, formulated to create specific chemical structures which are tacky. *Unlike rubber formulations, compounding creates a chemical change of the components.*

- Permanent Bonding applications
- Have a high initial bond and adhere well to most surfaces
- Lower initial adhesion than their rubber counterparts

They have outstanding performance features:

- Excellent aging characteristics (Outdoor & High Performance)
- · Outstanding chemical and ultra violet light resistance
- Higher temperature stability than rubber adhesives
- · Great for long term, durable applications!

Silicone Adhesives

Polymers with an inorganic backbone and organic side groups that are especially formulated for premium performance

- Bond to silicone-coated and other LSE surfaces
- Widest temperature range
- High cost

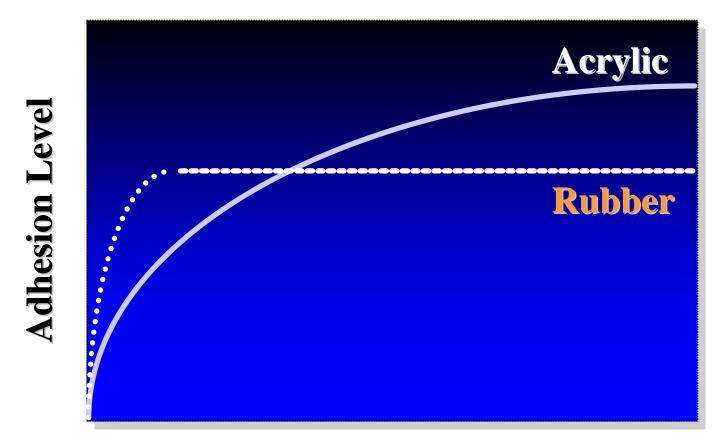
Performance Characteristics Include:

- Suitable for long term, critical applications
- Higher temperature resistance, service range -30°F to 500°F (depending on applied load).
- Resistance to chemicals, moisture and ultraviolet rays
- Clean removability to some substrates

How PSA Bonds?

PSAs flow into the substrates;

No curing process.


Dwell Time allows the adhesive to "flow" into the Peaks & Valleys of the Substrate

Initial Adhesion No Dwell Time Ultimate
Adhesion
72 hrs @ 25 °C

The bond strength of Acrylic adhesives builds over time...

Dwell Time

Visco-Elasticity

"Say it with Me"

Peanut Butter

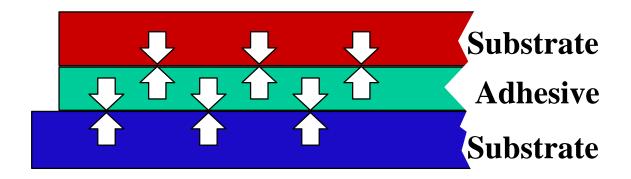
• Viscosity = Thickness

• Elasticity = Stretch

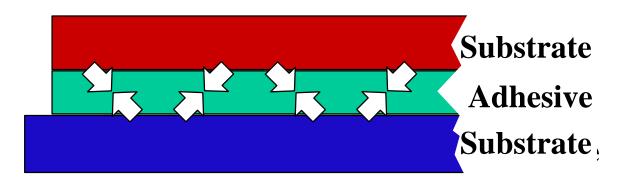
Visco-Elasticity

Viscosity allows the PSA to bond and flow.

Elasticity absorbs energy & shock.

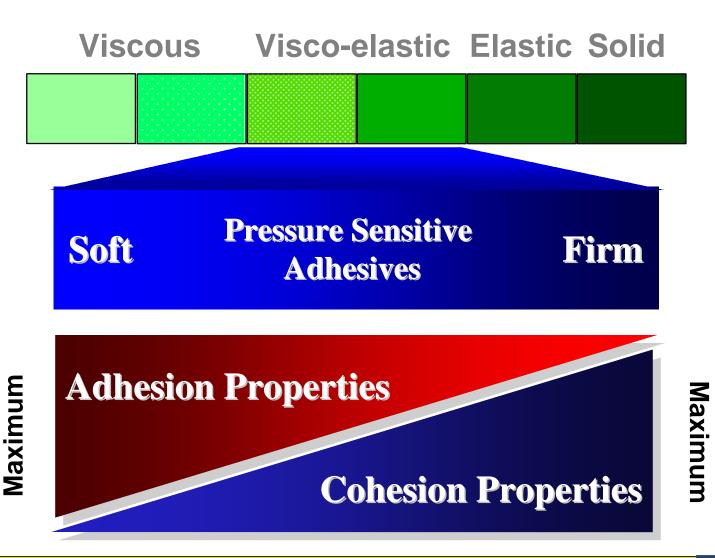


Gives PSAs Strength



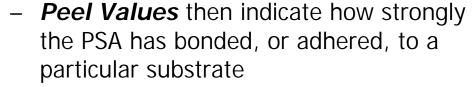
Two important PSA characteristics:

Adhesion Attraction forces joining unlike substrates



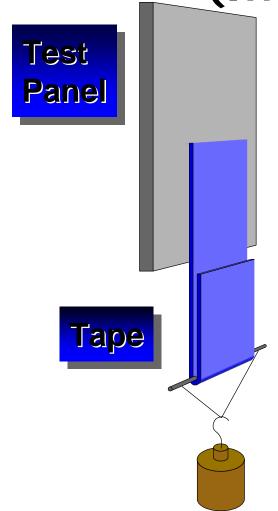
Cohesion Internal strength of material

Viscosity and Elasticity



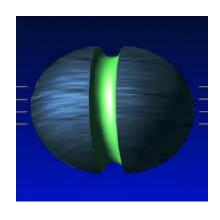
"Peel Tests" measure Adhesion

Adhesion can be measured by a test method called the *Peel Test* (PSTC or ASTM)

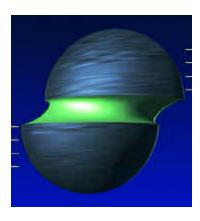


- Initial adhesion indicates how well a PSA has bonded to a substrate after a short period of time, usually seconds or minutes
- Ultimate adhesion refers to a PSA's bond strength after 72 hours
- Both initial and ultimate adhesion are measured by the Peel Test

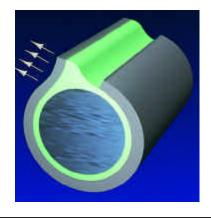
"Shear Tests" measure Cohesion (Internal Strength)


- Cohesion can be measured by a test method called the Shear Test (PSTC or ASTM)
 - Shear Values then indicate the internal strength of an adhesive
 - Adhesives with higher shear values (which equates to stronger cohesion) will withstand exposure to higher temperatures and chemicals

Load Weight

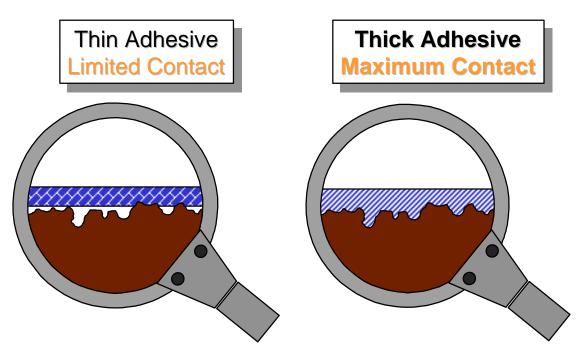


Forces Effecting PSA Performance


Tensile

Shear

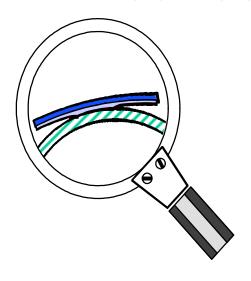
Peel


Factors that can influence your PSA success...

Surface Contamination

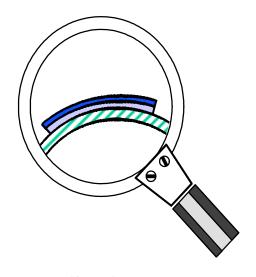
Surface: Environment: Application: Surface Texture Solvents/Chemicals Time Temperature Exposure Temperature Surface Energy UV Light Exposure Pressure

Surface Texture



For rough surfaces, use a thicker adhesive!

But thicker is not always better! Use the right thickness for your substrate; testing will help determine this.



Surface Contour

Curved Surface combined with thin and firm adhesive may cause:

- * Internal stresses and
- * Edge lift (Flagging)

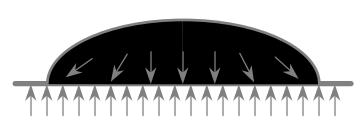
Curved Surface combined with thick and soft adhesive may provide:

- * Maximum surface contact
- * additional bond strength

Surface Energy

Adhesion is the molecular attraction between unlike materials, similar to magnetic force.

The *surface energy* of a material determines the strength of this attraction. The higher the surface energy, the greater the attraction. The lower the surface energy, the weaker the attraction.


On an automobile, unwaxed for years, water spreads on the surface in large puddles. This is "High Surface Energy", allowing the water to flow. On a freshly waxed car, the water will bead up. This is Low Surface Energy keeping the water from flowing out!

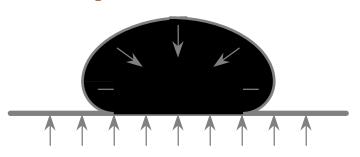
Common materials and their respective surface energies...

High Surface Energy

Easy-to-adhere

good adhesive "wet-out"

Metals ABS


Kapton Polycarbonate

Polyester PVC
Polyurethane Acrylic

Low Surface Energy

Hard-to-adhere

poor adhesive "wet-out"

Polyvinyl Acetate

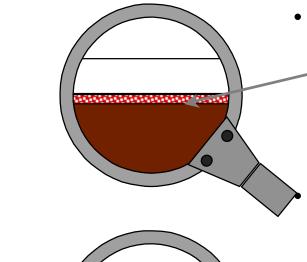
Polystyrene

Acetal

EVA

Powder paints

Polyethylene


Polypropylene Tedlar (PVF)

Teflon

Surface Contamination

Each of these situations can result in a poor bond....

Grease, Moisture, Oil, Mold Release Chemicals

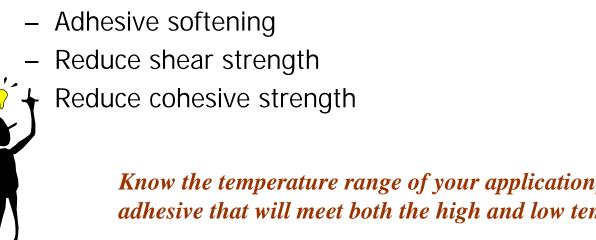
Creates a barrier between adhesive and substrate

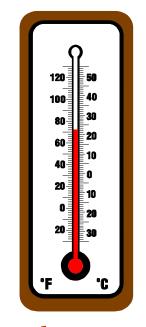
Dust, Talc, Fiber, Particle Contamination

- Affects tackiness of adhesive
- Reduces contact surface area

Always clean your substrates before applying a PSA!

Chemical/Solvent Resistance


- Solvent Effects on PSAs
 - Adhesive swelling
 - Adhesive softening
 - Dissolve adhesive



Many acrylic adhesives have high cohesive strength allowing them to withstand many different types of solvents for extended periods of time.

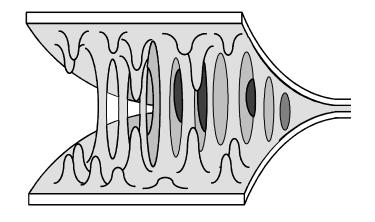
Temperature Factors

- Low Temperatures can have a negative affect on adhesives....
 - Firms & makes adhesives brittle
 - Reduce adhesive tack
 - Increase shock sensitivity
- So can high temperatures...

Know the temperature range of your application, then select an adhesive that will meet both the high and low temperature extremes.

UV Light

- Ultra Violet (UV) light can have negative affects on adhesives as well:
 - Discoloration
 - Brittleness
 - Chemical Degradation



When you know UV light will be a factor, select an adhesive that has UV resistance!

Plasticizers

- Make adhesive soft and pliable
- Causes adhesives to:
 - Soften
 - Turn stringy
 - Discolor

Some adhesives have varying resistance to plasticizer migration allowing them to withstand the softening effect.

Applying your PSA can be THE determining factor for success...

 Allow at least 72 hours before testing the ultimate adhesion strength. This gives the adhesive time to *flow*, effectively covering your substrates.

Temperature

 Applying your adhesive at room temperature is always best. Slightly higher temperatures can actually improve adhesive flow, speeding up the the bonding process. At cold temperatures, select an adhesive made for application in cold temps.

Pressure

 Applying adequate pressure will accelerate the adhesive flow and eliminate trapped air. This will ensure higher adhesive coverage of the substrate.

Some final tips:

Know your surfaces or substrates

Select the right adhesive

Finally, clean your substrate

100s of Tapes

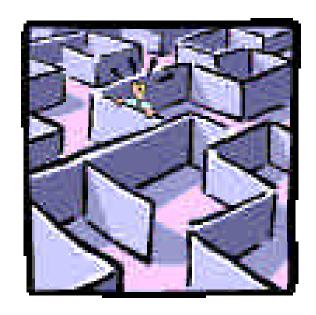
Quiz

Name Three Factors that can influence PSA Selection

Surface Texture

Surface Contour

Temperature Exposure


Surface Energy

UV Light Exposure

Pressure

Surface Contamination

Questions or Comments

